1,754 research outputs found

    Structure and function of natural sulphide-oxidizing microbial mats under dynamic input of light and chemical energy

    Get PDF
    We studied the interaction between phototrophic and chemolithoautotrophic sulphide-oxidizing microorganisms in natural microbial mats forming in sulphidic streams. The structure of these mats varied between two end-members: one characterized by a layer dominated by large sulphur-oxidizing bacteria (SOB; mostly Beggiatoa-like) on top of a cyanobacterial layer (B/C mats) and the other with an inverted structure (C/B mats). C/B mats formed where the availability of oxygen from the water column was limited (<5 mu M). Aerobic chemolithotrophic activity of the SOB depended entirely on oxygen produced locally by cyanobacteria during high light conditions. In contrast, B/C mats formed at locations where oxygen in the water column was comparatively abundant (445 mu M) and continuously present. Here SOB were independent of the photosynthetic activity of cyanobacteria and outcompeted the cyanobacteria in the uppermost layer of the mat where energy sources for both functional groups were concentrated. Outcompetition of photosynthetic microbes in the presence of light was facilitated by the decoupling of aerobic chemolithotrophy and oxygenic phototrophy. Remarkably, the B/C mats conserved much less energy than the C/B mats, although similar amounts of light and chemical energy were available. Thus ecosystems do not necessarily develop towards optimal energy usage. Our data suggest that, when two independent sources of energy are available, the structure and activity of microbial communities is primarily determined by the continuous rather than the intermittent energy source, even if the time-integrated energy flux of the intermittent energy source is greater

    Spatial Separation and Working Memory Capacity Affect Selective Visual Attention in the Periphery

    Get PDF
    The current study aimed to examine the effects of spatial separation and working memory capacity on selective visual attention. We investigated differences in the ability to identify the two covertly attended stimuli that appeared either along one of the meridians (e.g., both along the horizontal) or along two of the meridians (e.g., one along the horizontal and one along the vertical) in the attention-window task. Two visual stimuli in the periphery could be perceived along wider extents of the attentional focus’ meridians (horizontal, vertical, and diagonal) when they were located along the same meridian (e.g., horizontal) compared to two different ones (e.g., horizontal and vertical). Subjects with high working memory capacity outperformed subjects with lower working memory capacity in both conditions and stimuli presented on two meridians were less accurately perceived. The findings support the proposal that individual differences in working memory capacity are important for selective spatial visual attention

    Superconducting Superstructure for the TESLA Collider

    Get PDF
    We discuss the new layout of a cavity chain (superstructure) allowing, we hope, significant cost reduction of the RF system of both linacs of the TESLA linear collider. The proposed scheme increases the fill factor and thus makes an effective gradient of an accelerator higher. We present mainly computations we have performed up to now and which encouraged us to order the copper model of the scheme, still keeping in mind that experiments with a beam will be necessary to prove if the proposed solution can be used for the acceleration.Comment: 11 page

    Appearance of the Single Gyroid Network Phase in Nuclear Pasta Matter

    Get PDF
    Nuclear matter under the conditions of a supernova explosion unfolds into a rich variety of spatially structured phases, called nuclear pasta. We investigate the role of periodic network-like structures with negatively curved interfaces in nuclear pasta structures, by static and dynamic Hartree-Fock simulations in periodic lattices. As the most prominent result, we identify for the first time the {\it single gyroid} network structure of cubic chiral I4123I4_123 symmetry, a well known configuration in nanostructured soft-matter systems, both as a dynamical state and as a cooled static solution. Single gyroid structures form spontaneously in the course of the dynamical simulations. Most of them are isomeric states. The very small energy differences to the ground state indicate its relevance for structures in nuclear pasta.Comment: 7 pages, 4 figure

    The Unseen World: Environmental Microbial Sequencing and Identification Methods for Ecologists

    Get PDF
    Microorganisms inhabit almost every environment, comprise the majority of diversity on Earth, are important in biogeochemical cycling, and may be vital to ecosystem responses to large-scale climatic change. In recent years, ecologists have begun to use rapidly advancing molecular techniques to address questions about microbial diversity, biogeography, and responses to environmental change. Studies of microbes in the environment generally focus on three broad objectives: determining which organisms are present, what their functional capabilities are, and which are active at any given time. However, comprehending the range of methodologies currently in use can be daunting. To provide an overview of environmental microbial sequence data collection and analysis approaches, we include case studies of microbiomes ranging from the human mouth to geothermal springs. We also suggest contexts in which each technique can be applied and highlight insights that result from their use

    Possible link between Earth's rotation rate and oxygenation

    Get PDF
    The biotic and abiotic controls on major shifts in atmospheric oxygen and the persistence of low-oxygen periods over a majority of Earth’s history remain under debate. Explanations of Earth’s stepwise pattern of oxygenation have mostly neglected the effect of changing diel illumination dynamics linked to daylength, which has increased through geological time due to Earth’s rotational deceleration caused by tidal friction. Here we used microsensor measurements and dynamic modelling of interfacial solute fluxes in cyanobacterial mats to investigate the effect of changing daylength on Precambrian benthic ecosystems. Simulated increases in daylength across Earth’s historical range boosted the diel benthic oxygen export, even when the gross photosynthetic production remained constant. This fundamental relationship between net productivity and daylength emerges from the interaction of diffusive mass transfer and diel illumination dynamics, and is amplified by metabolic regulation and microbial behaviour. We found that the resultant daylength-driven surplus organic carbon burial could have shaped the increase in atmospheric oxygen that occurred during the Great and Neoproterozoic Oxidation Events. Our suggested mechanism, which links the coinciding increases in daylength and atmospheric oxygen via enhanced net productivity, reveals a possible contribution of planetary mechanics to the evolution of Earth’s biology and geochemistry

    Transcutaneous vagus nerve stimulation via tragus or cymba conchae: Are its psychophysiological effects dependent on the stimulation area?

    Get PDF
    Efforts in optimizing transcutaneous vagus nerve stimulation (tVNS) are crucial to further develop its potential in improving cognitive and autonomic regulation. The present study focused on this topic. The aim was to compare for the first time the main stimulation areas of the ear currently used in studies with tVNS, taking cognitive as well as neurophysiological effects into account. The main areas to be compared with one another were tragus, cymba conchae, and earlobe (sham) stimulation. Post-error slowing, which has already been shown to be influenced by tVNS, was used to investigate the cognitive effects of tVNS when applied on the different auricular areas. On the neurophysiological level, we measured pupillary responses as an index of norepinephrine activity during post-error slowing, and cardiac vagal activity to investigate the activation of neural pathways involved in post-error slowing. Stimulation of different auricular areas led to no differences in post-error slowing and in pupillary responses. However, the neurological processes involved in post-error slowing could be observed, since norepinephrine activity increased after committing an error. Further, there was an increase in cardiac vagal activity over the test period that was independent of the stimulation areas. The results suggest that tVNS targeting the ear might have a non-specific effect on the processing of error commission, on pupillary responses, and on cardiac vagal activity. We conclude that it is necessary to consider alternatives for sham conditions other than electrical earlobe stimulation. [Abstract copyright: Copyright © 2021 Elsevier B.V. All rights reserved.
    • …
    corecore